Математика курс лекций Производная функции

11.11.2017

Математика курс лекций Производная функции

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Определение производной функции, ее геометрический и физический смысл Площадь плоской криволинейной трапеции

Производная функции

Задания для подготовки к практическому занятию

Прочитайте предложенные рассуждения и примеры. Ответьте письменно на вопросы и решите задачи. Несобственные интегралы Курс лекций по математике

Определение производной функции, ее геометрический и физический смысл, ее свойства подробно описаны в §13 лекций. Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x). При этом следует помнить, что .

Примеры.

Вычислить производные функций:

а); б); в); г)y=sin2x; д)y=ln(x2+1)

Решение:

Производная широко применяется в исследовании функции и при решении связанных с этим практических задач.

В том числе дифференцирование применяют для вычисления пределов, используя так называемое правило Лопиталя:

Предел отношения функций, представляющий неопределенность вида или , равен пределу отношения их производных:

12-13. Производная и дифференциал. Исследование функций.

Задания для подготовки к практическому занятию

Прочитайте предложенные рассуждения и примеры.

Примеры.

Вычислить производные функций:

Дифференциал функции

Пример. Дана функция . Найти ее первый дифференциал dy

Решение: Воспользуемся формулой первого дифференциала: .

. Таким образом, .

2. Производные и дифференциалы высших порядков

Пример. Дана функция Найти

Решение: Воспользуемся формулой второго дифференциала: . Для того. Чтобы найти вторую производную , продифференцируем данную функцию последовательно дважды:

Таким образом,

Выполнить, если возможно, действия с матрицами:

Экстремумы ФНП

Локальные максимумы и минимумы ФНП

Говорят, что функция z = f (x, y) имеет локальный максимум в точке (x0, y0), если существует окрестность точки (x0, y0), в которой выполнено неравенство f (x0, y0) > f (x, y) для всех точек (x, y) из этой окрестности, отличных от (x0, y0): .

Если же f (x0, y0) < f (x, y) для всех точек (x, y) из некоторой окрестности точки (x0, y0), отличных от (x0, y0), то функция z имеет локальный минимум ФНП в точке (x0, y0): .

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *